Diet-induced obesity and acute hyperlipidemia reduce IκBα levels in rat skeletal muscle in a fiber-type dependent manner

Author:

Bhatt Bankim A.,Dube John J.,Dedousis Nikolas,Reider Jodie A.,O’Doherty Robert M.

Abstract

Increased activity of proinflammatory/stress pathways has been implicated in the pathogenesis of insulin resistance in obesity. However, the effects of obesity on the activity of these pathways in skeletal muscle, the major insulin-sensitive tissue by mass, are poorly understood. Furthermore, the mechanisms that activate proinflammatory/stress pathways in obesity are unknown. The present study addressed the effects of diet-induced obesity (DIO; 6 wk of high-fat feeding) and acute (6-h) hyperlipidemia (HL) in rats on activity of IKK/IκB/NF-κB c-Jun NH2-terminal kinase, and p38 MAPK in three skeletal muscles differing in fiber type [superficial vastus (Vas; fast twitch-glycolytic), soleus (Sol; slow twitch-oxidative), and gastrocnemius (Gas; mixed)]. DIO decreased the levels of the IκBα in Vas (24 ± 3%, P = 0.001, n = 8) but not in Sol or Gas compared with standard chow-fed controls. Similar to DIO, HL decreased IκBα levels in Vas (26 ± 5%, P = 0.006, n = 6) and in Gas (15 ± 4%, P = 0.01, n = 7) but not in Sol compared with saline-infused controls. Importantly, the fiber-type-dependent effects on IκBα levels could not be explained by differential accumulation of triglyceride in Sol and Vas. HL, but not DIO, decreased phospho-p38 MAPK levels in Vas (41 ± 7% P = 0.004, n = 6) but not in Sol or Gas. Finally, skeletal muscle c-Jun NH2-terminal kinase activity was unchanged by DIO or HL. We conclude that diet-induced obesity and acute HL reduce IκBα levels in rat skeletal muscle in a fiber-type-dependent manner.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3