Relaxin-mediated renal vasodilation in the rat is associated with falls in glomerular blood pressure

Author:

Deng Aihua1,Conrad Kirk23,Baylis Chris2

Affiliation:

1. Departments of Physiology and Functional Genomics, University of Florida, Gainesville, Florida

2. Departments of Obstetrics and Gynecology, University of Florida, Gainesville, Florida

3. Department of Medicine, University of Florida, Gainesville, Florida

Abstract

Relaxin (RLX) is a pleiotropic peptide hormone with marked renal vasodilatory actions that are physiologically important during pregnancy. RLX also has potent antifibrotic actions and is being tested therapeutically in various fibrotic diseases, including chronic kidney disease (CKD). Since renal vasodilation may expose the glomerulus to increased blood pressure [glomerular capillary pressure (PGC)], which exacerbates progression of CKD, we assessed the glomerular hemodynamic actions of acute (0.89 µg·100 g body wt−1·h−1 iv over 75 min) and chronic (1.5 µg·100 g body wt−1·h−1 sc) administration of RLX. Both acute and chronic RLX produced marked renal vasodilation and increased renal plasma flow (RPF) in euvolemic, anesthetized male rats. Glomerular filtration rate also increased with RLX, but the magnitude of the rise was much less than the increase in RPF due to concomitant decreases in filtration fraction. The fall in filtration fraction was the result of significant decreases in PGC, despite a slight increase in mean arterial blood pressure (MAP) with acute RLX and no net change in MAP with chronic RLX. This fall in PGC occurred because of the “in-series” arrangement of the afferent and efferent arteriolar resistance vessels, which can regulate PGC independently of MAP. With both acute and chronic RLX, efferent arteriolar resistance vessels relaxed to a greater extent than afferent arteriolar resistance vessels, thus producing falls in PGC. Based on this finding, RLX has a beneficial hemodynamic impact on the kidney, which, together with the antifibrotic actions of RLX, suggests a strong therapeutic potential for use in CKD.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

UF intramural funds

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3