Affiliation:
1. Department of Cell Biology and Centre for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
Abstract
This study was done to investigate the effects of microinjections of adrenomedullin (ADM), a vasoactive neuropeptide, in the rostral ventrolateral medulla (RVLM) on mean arterial pressure (MAP) and heart rate (HR) in urethane-anesthetized rats, and to assess the potential roles of glutamate and nitric oxide (NO) in these effects. Unilateral injections of ADM (0.01 or 0.1 pmol) into the RVLM significantly increased MAP and HR in a dose-dependent manner, whereas ADM at 0.001 pmol was ineffective. Microinjections of ADM (0.01 pmol) outside the RVLM had no effects on MAP or HR. Coinjections of a putative ADM receptor antagonist, ADM22–52 (0.01 pmol), abolished the increases in MAP and HR evoked by ADM (0.01 pmol). The vasopressor effects of ADM (0.01 pmol) in the RVLM were abolished by coinjections of either dizocilpine hydrogen maleate (a selective NMDA glutamate receptor antagonist, 500 pmol) or 6-cyano-7-nitroquinoxaline-2,3-dione (a selective non-NMDA glutamate receptor antagonist, 50 pmol). The ADM-induced vasopressor effects were also abolished by coadministration of either 7-nitroindazole sodium salt (a selective neuronal NO synthase inhibitor, 0.05 pmol) or methylene blue (a soluble guanylyl cyclase inhibitor, 100 pmol). These results suggest that ADM in the RVLM stimulates increases in MAP and HR through ADM receptor-mediated mechanisms. These effects are mediated by glutamate via both NMDA and non-NMDA receptors. NO, derived from neuronal NO synthase, also contributes to the ADM-induced vasopressor effects via a soluble guanylyl cyclase-associated signaling pathway.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献