Cold acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria

Author:

Bayley Jeppe Seamus1ORCID,Sørensen Jesper Givskov1,Moos Martin2,Koštál Vladimír2,Overgaard Johannes1

Affiliation:

1. Department of Biology, Aarhus University, Aarhus, Denmark

2. Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic

Abstract

Cold exposure depolarizes cells in insects due to a reduced electrogenic ion transport and a gradual increase in extracellular K+ concentration ([K+]). Cold-induced depolarization is linked to cold injury in chill-susceptible insects, and the locust, Locusta migratoria, has been shown to improve cold tolerance following cold acclimation through depolarization resistance. Here we investigate how cold acclimation influences depolarization resistance and how this resistance relates to improved cold tolerance. To address this question, we investigated if cold acclimation affects the electrogenic transport capacity and/or the relative K+ permeability during cold exposure by measuring membrane potentials of warm- and cold-acclimated locusts in the presence and absence of ouabain (Na+-K+ pump blocker) or 4-aminopyridine (4-AP; voltage-gated K+ channel blocker). In addition, we compared the membrane lipid composition of muscle tissue from warm- and cold-acclimated locust and the abundance of a range transcripts related to ion transport and cell injury accumulation. We found that cold-acclimated locusts are depolarization resistant due to an elevated K+ permeability, facilitated by opening of 4-AP-sensitive K+ channels. In accordance, cold acclimation was associated with an increased abundance of Shaker transcripts (gene encoding 4-AP-sensitive voltage-gated K+ channels). Furthermore, we found that cold acclimation improved muscle cell viability following exposure to cold and hyperkalemia even when muscles were depolarized substantially. Thus cold acclimation confers resistance to depolarization by altering the relative ion permeability, but cold-acclimated locusts are also more tolerant to depolarization.

Funder

AUFF NOVA

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3