Impairment of coronary endothelial cell ETB receptor function after short-term inhalation exposure to whole diesel emissions

Author:

Cherng Tom W.,Campen Matthew J.,Knuckles Travis L.,Gonzalez Bosc Laura,Kanagy Nancy L.

Abstract

Air pollutant levels positively correlate with increases in both acute and chronic cardiovascular disease. The pollutant diesel exhaust (DE) increases endothelin (ET) levels, suggesting that this peptide may contribute to DE-induced cardiovascular disease. We hypothesized that acute exposure to DE also enhances ET-1-mediated coronary artery constrictor sensitivity. Constrictor responses to KCl, U-46619, and ET-1 were recorded by videomicroscopy in pressurized intraseptal coronary arteries from rats exposed for 5 h to DE (300 μg/m3) or filtered air (Air). ET-1 constriction was augmented in arteries from DE-exposed rats. Nitric oxide synthase (NOS) inhibition [ Nω-nitro-l-arginine (l-NNA), 100 μM] and endothelium inactivation augmented ET-1 responses in arteries from Air but not DE rats so that after either treatment responses were not different between groups. DE exposure did not affect KCl and U-46619 constrictor responses, while NOS inhibition augmented KCl constriction equally in both groups. Thus basal NOS activity does not appear to be affected by DE exposure. The endothelin type B (ETB) receptor antagonist BQ-788 (10 μM) inhibited ET-1 constriction in DE but not Air arteries, and constriction in the presence of the antagonist was not different between groups. Cytokine levels were not different in plasma from DE and AIR rats, suggesting that acute exposure to DE does not cause an immediate inflammatory response. In summary, a 5-h DE exposure selectively increases constrictor sensitivity to ET-1. This augmentation is endothelium-, NOS-, and ETB receptor dependent. These data suggest that DE exposure diminishes ETB receptor activation of endothelial NOS and augments ETB-dependent vasoconstriction. This augmented coronary vasoreactivity to ET-1 after DE, coupled with previous reports that DE induces production of ET-1, suggests that ET-1 may contribute to the increased incidence of cardiac events during acute increases in air pollution levels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3