Race, sex, and the regulation of urine osmolality: observations made during water deprivation

Author:

Hancock Michael L.12,Bichet Daniel G.3,Eckert George J.2,Bankir Lise4,Wagner Mary Anne12,Pratt J. Howard12

Affiliation:

1. The Richard L. Roudebush Veterans Affairs Medical Center and

2. Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana;

3. Departments of Medicine and Physiology, Université de Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada; and

4. INSERM Unit 872, Université Pierre et Marie Curie (Paris VI), Centre de Recherche des Cordeliers, Paris, France

Abstract

A more concentrated urine is excreted by blacks than whites and by men than women. The purpose of this study was to explore the physiological bases for the race and sex effects during water deprivation when osmoregulation is challenged and differences are amplified. Drinking water was withheld from 17 blacks (10 men) and 19 whites (9 men) for 24 h. Vasopressin (VP) levels and osmolality in plasma (Posmol) and urine (Uosmol) were measured basally and then every 4 h. Uosmol was higher in blacks at baseline ( P = 0.01) and during water deprivation ( P = 0.046). Before and during water deprivation, no differences were seen in levels of VP, Posmol, or the VP-Uosmol relationship between blacks and whites. Although VP levels were initially higher in men ( P < 0.02 for samples collected over the first 12 h), over the last 12 h of water deprivation, Uosmol was higher ( P = 0.027) and more responsive to the level of VP (in terms of slopes, P = 0.0001) in women than men. Our results suggest that, after a period of water deprivation, there develops a sensitivity of the collecting duct to VP that is greater in women. Although Uosmol is higher in blacks, the race difference in water conservation did not appear to result from differences in the level of VP or the sensitivity of the collecting duct to VP. Upstream effects such as Na+ uptake in the thick ascending limb, with its ensuing effects on water reabsorption, need to be considered in future studies of the relationship of race to water conservation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3