Rescue of dystrophic skeletal muscle by PGC-1α involves restored expression of dystrophin-associated protein complex components and satellite cell signaling

Author:

Hollinger Katrin1,Gardan-Salmon Delphine1,Santana Connie1,Rice Drance1,Snella Elizabeth1,Selsby Joshua T.1

Affiliation:

1. Department of Animal Science, Iowa State University, Ames, Iowa

Abstract

Duchenne muscular dystrophy is typically diagnosed in the preschool years because of locomotor defects, indicative of muscle damage. Thus, effective therapies must be able to rescue muscle from further decline. We have established that peroxisome proliferator-activated receptor gamma coactivator 1-alpha ( Pgc-1α) gene transfer will prevent many aspects of dystrophic pathology, likely through upregulation of utrophin and increased oxidative capacity; however, the extent to which it will rescue muscle with disease manifestations has not been determined. Our hypothesis is that gene transfer of Pgc-1α into declining muscle will reduce muscle injury compared with control muscle. To test our hypothesis, adeno-associated virus 6 (AAV6) driving expression of Pgc-1α was injected into single hind limbs of 3-wk-old mdx mice, while the contralateral limb was given a sham injection. At 6 wk of age, treated solei had 37% less muscle injury compared with sham-treated muscles ( P < 0.05). Resistance to contraction-induced injury was improved 10% ( P < 0.05), likely driven by the five-fold ( P < 0.05) increase in utrophin protein expression and increase in dystrophin-associated complex members. Treated muscles were more resistant to fatigue, which was likely caused by the corresponding increase in oxidative markers. Pgc-1α overexpressing limbs also exhibited increased expression of genes related to muscle repair and autophagy. These data indicate that the Pgc-1α pathway remains a good therapeutic target, as it reduced muscle injury and improved function using a rescue paradigm. Further, these data also indicate that the beneficial effects of Pgc-1α gene transfer are more complex than increased utrophin expression and oxidative gene expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3