Author:
Ray Patricio E.,Tassi Elena,Liu Xue-Hui,Wellstein Anton
Abstract
A characteristic finding of childhood HIV-associated hemolytic uremic syndrome (HIV-HUS) is the presence of endothelial injury and microcystic tubular dilation, leading to a rapid progression of the renal disease. We have previously shown that a secreted fibroblast growth factor-binding protein (FGF-BP) is upregulated in kidneys from children affected with HIV-HUS and HIV nephropathy. Here, we sought to determine the potential role of FGF-BP in the pathogenesis of HIV-HUS. By immunohistochemical and in situ hybridization studies, we observed FGF-BP protein and mRNA upregulation in regenerating renal tubular epithelial cells from kidneys of HIV-Tg26mice with late-stage renal disease, that is, associated with the development of microcystic tubular dilatation and accumulation of FGF-2. Moreover, FGF-BP increased the FGF-2-dependent growth and survival of cultured primary human renal glomerular endothelial cells and enhanced FGF-2-induced MAPK/ERK2 activation, as well as the proliferation of immortalized GM7373 endothelial cells. We propose that HIV-Tg26mice are a clinically relevant model system to study the role of FGF-BP in the pathogenesis of HIV-associated renal diseases. Furthermore, the upregulation of FGF-BP by regenerating renal tubular epithelial cells may provide a mechanism by which the regenerative and angiogenic activity of FGF-2 in renal capillaries can be modulated in children with HIV-HUS and other renal disease.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献