Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice

Author:

Lorenz John N.,Arend Lois J.,Robitz Rachel,Paul Richard J.,MacLennan A. John

Abstract

There is growing evidence that sphingosine 1-phosphate (S1P) plays an important role in regulating the development, morphology, and function of the cardiovascular system. There is little data, however, regarding the relative contribution of endogenous S1P and its cognate receptors (referred to as S1P1–5) to cardiovascular homeostasis. We used S1P2 receptor knockout mice (S1P2−/−) to evaluate the role of S1P2 in heart and vascular function. There were no significant differences in blood pressure between wild-type and S1P2−/− mice, measured in awake mice. Cardiac function, evaluated in situ by using a Millar catheter, was also not different in S1P2−/− mice under baseline or stimulated conditions. In vivo analysis of vascular function by flowmetry revealed decreases in mesenteric and renal resistance in S1P2−/− mice, especially during vasoconstriction with phenylephrine. In intact aortic rings, the concentration-force relations for both KCl and phenylephrine were right shifted in S1P2−/− mice, whereas the maximal isometric forces were not different. By contrast, in deendothelialized rings the concentration-force relations were not different but the maximal force was significantly greater in S1P2−/− aorta. Histologically, there were no apparent differences in vascular morphology. These data suggest that the S1P2 receptor plays an important role in the function of the vasculature and is an important mediator of normal hemodynamics. This is mediated, at least in part, through an effect on the endothelium, but direct effects on vascular smooth muscle cannot be ruled out and require further investigation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3