Cerebral perturbations during exercise in hypoxia

Author:

Verges Samuel123,Rupp Thomas12,Jubeau Marc4,Wuyam Bernard123,Esteve François35,Levy Patrick123,Perrey Stéphane6,Millet Guillaume Y.14

Affiliation:

1. INSERM U1042, Grenoble;

2. HP2 laboratory, Joseph Fourier University, Grenoble;

3. Exercise Research Unit, Grenoble University Hospital, Grenoble;

4. Université de Lyon, Saint-Etienne, France

5. INSERM U836/team 6, Grenoble Institute of Neurosciences, Grenoble;

6. Movement To Health (M2H), Montpellier-1 University, Euromov, Montpellier; and

Abstract

Reduction of aerobic exercise performance observed under hypoxic conditions is mainly attributed to altered muscle metabolism due to impaired O2 delivery. It has been recently proposed that hypoxia-induced cerebral perturbations may also contribute to exercise performance limitation. A significant reduction in cerebral oxygenation during whole body exercise has been reported in hypoxia compared with normoxia, while changes in cerebral perfusion may depend on the brain region, the level of arterial oxygenation and hyperventilation induced alterations in arterial CO2. With the use of transcranial magnetic stimulation, inconsistent changes in cortical excitability have been reported in hypoxia, whereas a greater impairment in maximal voluntary activation following a fatiguing exercise has been suggested when arterial O2 content is reduced. Electromyographic recordings during exercise showed an accelerated rise in central motor drive in hypoxia, probably to compensate for greater muscle contractile fatigue. This accelerated development of muscle fatigue in moderate hypoxia may be responsible for increased inhibitory afferent signals to the central nervous system leading to impaired central drive. In severe hypoxia (arterial O2 saturation <70–75%), cerebral hypoxia per se may become an important contributor to impaired performance and reduced motor drive during prolonged exercise. This review examines the effects of acute and chronic reduction in arterial O2 (and CO2) on cerebral blood flow and cerebral oxygenation, neuronal function, and central drive to the muscles. Direct and indirect influences of arterial deoxygenation on central command are separated. Methodological concerns as well as future research avenues are also considered.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3