Abstract
alpha-Methyl-p-tyrosine shifts the acrophase (time of highest temperature) of the circadian temperature rhythm of the rat to earlier or later times of day depending on the phase of the circadian cycle at which the drug is administered. When alpha-methyl-p-tyrosine methyl ester HCl is injected intraperitoneally at a dose of 100 mg/kg late in the projected 8-h light phase, the acrophase of the intraperitoneal temperature rhythm is delayed by up to 3 h. However, when the same dose of drug is given 9-10 h into the projected 16-h dark phase of the daily cycle, the acrophase of the temperature rhythm occurs about 2 h earlier than expected. The times of alpha-methyl-p-tyrosine administration leading to maximal phase delays or advances are correlated with the times of minimal and maximal turnover of norepinephrine in the hypothalamus. These results suggest that changing rates of norepinephrine turnover in the hypothalamus may regulate the circadian temperature rhythm in rats. The results also emphasize the fact that the effects of drugs may vary as a function of the time of administration. This fact must be taken into account in pharmacologic testing.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献