Computer simulation of metabolism of glucose-perfused rat heart in a work-jump

Author:

Achs M. J.,Garfinkel D.,Opie L. H.

Abstract

A computer model of glycolysis, the tricarboxylic acid cycle, and related amino acid metabolism, is described for a glucose-perfused experimental rat heart preparation suddenly switched from low work load (Langendorff perfusion) to high work load (left atrial perfusion). Glycolytic intermediate measurements suggest activation of phosphofructokinase within a few seconds. This activation, and also that of other glycolytic enzymes, is calculated as due to a sharp increase in cytoplasmic Mg2+ level, which overcomes the inhibitory effects of a rapid fall in cytoplasmic pH to 6.77 (calculated from a rapid fall in creatine phosphate). Increased glycolytic substrate is initially supplied by glycogenolysis mediated by phosphorylase b (activated by an early rise in cytoplasmic AMP), followed by increased glucose uptake from the perfusate. Testable predictions are made by the model, especially that lactate production rate should peak early. Additional experiments are described that verify these predictions and fill gaps in the original measurements. The role of modeling in interpreting such experiments is discussed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3