Exercise training enhances insulin-stimulated nerve arterial vasodilation in rats with insulin-treated experimental diabetes

Author:

Olver T. Dylan1,McDonald Matthew W.2,Grisé Kenneth N.2,Dey Adwitia2,Allen Matti D.3,Medeiros Philip J.4,Lacefield James C.5,Jackson Dwayne N.4,Rice Charles L.36,Melling C. W. James2,Noble Earl G.2,Shoemaker J. Kevin17

Affiliation:

1. Neurovascular Research Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada;

2. Exercise Biochemistry Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada;

3. Neuromusclar Research Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada;

4. A. C. Burton Laboratory for Vascular Research, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada;

5. Department of Electrical and Computer Engineering, Department of Medical Biophysics and Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada;

6. Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada; and

7. Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada

Abstract

Insulin stimulates nerve arterial vasodilation through a nitric oxide (NO) synthase (NOS) mechanism. Experimental diabetes reduces vasa nervorum NO reactivity. Studies investigating hyperglycemia and nerve arterial vasodilation typically omit insulin treatment and use sedentary rats resulting in severe hyperglycemia. We tested the hypotheses that 1) insulin-treated experimental diabetes and inactivity (DS rats) will attenuate insulin-mediated nerve arterial vasodilation, and 2) deficits in vasodilation in DS rats will be overcome by concurrent exercise training (DX rats; 75–85% V̇o2 max, 1 h/day, 5 days/wk, for 10 wk). The baseline index of vascular conductance values (VCi = nerve blood flow velocity/mean arterial blood pressure) were similar ( P ≥ 0.68), but peak VCi and the area under the curve (AUCi) for the VCi during a euglycemic hyperinsulinemic clamp (EHC; 10 mU·kg−1·min−1) were lower in DS rats versus control sedentary (CS) rats and DX rats ( P ≤ 0.01). Motor nerve conduction velocity (MNCV) was lower in DS rats versus CS rats and DX rats ( P ≤ 0.01). When compared with DS rats, DX rats expressed greater nerve endothelial NOS (eNOS) protein content ( P = 0.04). In a separate analysis, we examined the impact of diabetes in exercise-trained rats alone. When compared with exercise-trained control rats (CX), DX rats had a lower AUCi during the EHC, lower MNCV values, and lower sciatic nerve eNOS protein content ( P ≤ 0.03). Therefore, vasa nervorum and motor nerve function are impaired in DS rats. Such deficits in rats with diabetes can be overcome by concurrent exercise training. However, in exercise-trained rats (CX and DX groups), moderate hyperglycemia lowers vasa nervorum and nerve function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3