Differential control of renal and lumbar sympathetic nerve activity during freezing behavior in conscious rats

Author:

Yoshimoto Misa1,Nagata Keiko1,Miki Kenju1

Affiliation:

1. Department of Environmental Health, Life Science, and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan

Abstract

The present study was designed to document changes in sympathetic nerve activity and cardiovascular function when conscious rats were challenged with a noise stressor to induce freezing behavior. The potential contribution of the arterial baroreceptors in regulating sympathetic nerve activity and cardiovascular adjustments during the freezing behavior was then examined. Wistar male rats were assigned to sham-operated (SO) and sinoaortic-denervated (SAD) groups and instrumented chronically with electrodes for measurements of renal (RSNA) and lumbar (LSNA) sympathetic nerve activity, electroencephalogram, electromyogram, and electrocardiogram and catheters for measurements of systemic arterial and central venous pressure. Both SO and SAD rats were exposed to 90 dB of white noise for 10 min, causing freezing behavior in both groups. In SO rats, freezing behavior was associated with an immediate and significant ( P < 0.05) increase in RSNA, no changes in LSNA or mean arterial pressure, and a significant ( P < 0.05) decrease in heart rate. SAD attenuated the magnitude of the immediate increase in RSNA and had no influence on the response in LSNA during freezing behavior compared with SO rats. Moreover, in SAD rats, mean arterial pressure increased significantly ( P < 0.05) while heart rate did not change during the freezing behavior. These data indicate that freezing behavior evokes regionally different changes in sympathetic outflows, which may be involved in generating the patterned responses of cardiovascular function to stressful or threatening sensory stimulation. Moreover, it is suggested that the arterial baroreceptors are involved in generating the differential changes in RSNA and LSNA and thus the patterned changes in cardiovascular functions observed during freezing behavior in conscious rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3