Rat carotid body chemosensory discharge and glomus cell HIF-1α expression in vitro: regulation by a common oxygen sensor

Author:

Roy Arijit,Baby Santhosh M.,Wilson David F.,Lahiri Sukhamay

Abstract

Addition of Pco (∼350 Torr) to a normoxic medium (Po2 of ∼130 Torr) was used to investigate the relationship between carotid body (CB) sensory discharge and expression of hypoxia-inducible factor 1α (HIF-1α) in glomus cells. Afferent electrical activity measured for in vitro -perfused rat CB increased rapidly (1–2 s) with addition of high CO (Pco of ∼350 Torr; Po2 of ∼130 Torr), and this increase was fully reversed by white light. At submaximal light intensities, the extent of reversal was much greater for monochromatic light at 430 and 590 nm than for light at 450, 550, and 610 nm. This wavelength dependence is consistent with the action spectrum of the CO compound of mitochondrial cytochrome a3. Interestingly, when isolated glomus cells cultured for 45 min in the presence of high CO (Pco of ∼350 Torr; Po2 of ∼130 Torr) in the dark, the levels of HIF-1α, which turn over slowly (many minutes), increased. This increase was not observed if the cells were illuminated with white light during the incubation. Monochromatic light at 430- and 590-nm light was much more effective than that at 450, 550, and 610 nm in blocking the CO-induced increase in HIF-1α, as was the case for chemoreceptor discharge. Although the changes in HIF-1α take minutes and those for CB neural activity occur in 1–2 s, the similar responses to CO and light suggest that the oxygen sensor is the same (mitochondrial cytochrome a3).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3