Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus

Author:

Summy-Long Joan Y.1,Hu Sanmei1

Affiliation:

1. Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania

Abstract

During the brain's innate immune response microglia, astroglia and ependymal cells resolve/repair damaged tissue and control infection. Released interleukin-1β (IL-1β) reaching cerebroventricles stimulates circumventricular organs (CVOs; subfornical organ, SFO; organum vasculosum lamina terminalis, OVLT), the median preoptic nucleus (MePO), and magnocellular and parvocellular neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. Hypertonic saline (HS) also activates these osmosensory CVOs and neuroendocrine systems, but, in contrast to IL-1β, inhibits the peripheral immune response. To examine whether the brain's innate immune response is attenuated by osmotic stimulation, sterile acidic perfusion fluid was microdialyzed (2 μl/min) in the SON area of conscious rats for 6 h with sterile HS (1.5 M NaCl) injected subcutaneously (15 ml/kg) at 5 h. Immunohistochemistry identified cytokine sources (IL-1β+; OX-42+ microglia) and targets (IL-1R+; inducible cyclooxygenase, COX-2+; c-Fos+) near the probe, in CVOs, MePO, ependymal cells, periventricular hypothalamus, SON, and PVN. Inserting the probe stimulated magnocellular neurons (c-Fos+; SON; PVN) via the MePO (c-Fos+), a response enhanced by HS. Microdialysis activated microglia (OX-42+; amoeboid/hypertrophied; IL-1β+) in the adjacent SON and bilaterally in perivascular areas of the PVN, periventricular hypothalamus and ependyma, coincident with c-Fos expression in ependymal cells and COX-2 in the vasculature. These microglial responses were attenuated by HS, coincident with activating parvocellular and magnocellular neuroendocrine systems and elevating circulating IL-1β, oxytocin, and vasopressin. Acidosis-induced cellular injury from microdialysis activated the brain's innate immune response by a mechanism inhibited by peripheral osmotic stimulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3