Excretion of fetal biliverdin by the rat placenta-maternal liver tandem

Author:

Briz Oscar,Macias Rocio I. R.,Perez Maria J.,Serrano Maria A.,Marin Jose J. G.

Abstract

Fetal liver immaturity is accompanied by active heme catabolism. Thus fetal biliary pigments must be excreted toward the mother by the placenta. To investigate biliverdin handling by the placenta-maternal liver tandem, biliverdin-IXα was administered to 21-day pregnant rats through the jugular vein or the umbilical artery of an in situ perfused placenta. Jugular administration resulted in the secretion into maternal bile of both bilirubin and biliverdin (3:1). However, when biliverdin was administered to the placenta, most of it was transformed into bilirubin before being transferred to the maternal blood. Injecting Xenopus laevis oocytes with mRNA from rat liver or placenta enhanced their ability to take up biliverdin, which was inhibited by estradiol 17β-d-glucuronide. The expression of three OATP isoforms in this system revealed that they have a varying degrees of ability to transport biliverdin (Oatp1/1a1 > Oatp2/1a4 > Oatp4/1b2). The abundance of their mRNA in rat trophoblast was Oatp1/1a1 >> Oatp4/1b2 > Oatp2/1a4. The expression of biliverdin-IXα reductase in rat placenta was detected by RT-PCR/sequencing and Western blot analysis. The relative abundance of biliverdin-IXα reductase mRNA (determined by real-time quantitative RT-PCR) was fetal liver > placenta > maternal liver. Common bile duct ligation in the last week of pregnancy induced an upregulation of biliverdin-IXα reductase in maternal liver but had no effect on fetal liver and placenta. In conclusion, several members of the OATP family may contribute to the uptake of fetal biliverdin by the rat placenta. Before being transferred to the mother, biliverdin is extensively converted into bilirubin by biliverdin-IXα reductase, whose expression is maintained even though bilirubin excretion into maternal bile is impaired.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3