Activation of CaMKII and ERK1/2 contributes to the time-dependent potentiation of Ca2+ response elicited by repeated application of capsaicin in rat DRG neurons

Author:

Zhang Xiulin1,Daugherty Stephanie L.1,de Groat William C.1

Affiliation:

1. Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania

Abstract

When capsaicin is applied repeatedly to dorsal root ganglion (DRG) neurons for brief periods (10–15 s) at short intervals (5–10 min), the evoked responses rapidly decline, a phenomenon termed tachyphylaxis. In addition to this phenomenon, the present study using Ca2+ imaging revealed that repeated application of capsaicin to rat dissociated DRG neurons at longer intervals (20–40 min) or during multiple applications at short intervals elicited an enhancement of the responses, termed potentiation. The potentiation occurred in 50–60% of the capsaicin-responsive cells, on average representing a 20- to 30% increase in the peak amplitude of the Ca2+ signal, and was maximal at a 40-min application interval. An analysis of the mechanisms underlying potentiation revealed that it was suppressed by block of Ca2+/calmodulin-dependent protein kinase II (CaMKII) with 5 μM KN-93 or block of the activation of extracellular signal-regulated kinase (ERK) 1/2 with 2 μM U-0126. Lowering the extracellular Ca2+ concentration from 2 to 1 mM or pretreatment with deltamethrin (1 μM), which blocks calcineurin and tachyphylaxis, enhanced potentiation. Potentiation was not affected by: 1) inhibition of protein kinase C or protein kinase A, 2) block of the three subtypes of neurokinin receptors, or 3) block of the trafficking of transient receptor potential V1 channel to the membrane. These results indicate that the potentiation is a slowly developing Ca2+-modulated process that is mediated by a complex intracellular signaling pathway involving activation of CaMKII and ERK1/2. Potentiation may be an important peripheral autosensitization mechanism that occurs independently of the pronociceptive effects of inflammatory mediators and neurotrophic factors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3