Prenatal exposure to ethanol causes partial diabetes insipidus in adult rats

Author:

Knee Daniel S.,Sato Aileen K.,Uyehara Catherine F. T.,Claybaugh John R.

Abstract

Chronic consumption of ethanol in adult rats and humans leads to reduced AVP-producing neurons, and prenatal ethanol (PE) exposure has been reported to cause changes in the morphology of AVP-producing cells in the suprachiasmatic nucleus of young rats. The present studies further characterize the effects of PE exposure on AVP in the young adult rat, its hypothalamic synthesis, pituitary storage, and osmotically stimulated release. Pregnant rats were fed a liquid diet with 35% of the calories from ethanol or a control liquid diet for days 7–22 of pregnancy. Water consumption and urine excretion rate were measured in the offspring at 60–68 days of age. Subsequently, the offspring were infused with 5% NaCl at 0.05 ml·kg−1·min−1 with plasma samples taken before and at three 40-min intervals during infusion for measurement of AVP and osmolality. Urine output and water intake were ∼20% greater in PE-exposed rats than in rats with no PE exposure, and female rats had a greater water intake than males. The relationship between plasma osmolality and AVP in PE-exposed rats was parallel to, but shifted to the right of, the control rats, indicating an increase in osmotic threshold for AVP release. Pituitary AVP was reduced by 13% and hypothalamic AVP mRNA content was reduced by 35% in PE-exposed rats. Our data suggest that PE exposure can cause a permanent condition of a mild partial central diabetes insipidus.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference32 articles.

1. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma

2. The Effect of Maternal Hypoxia on Fetal Pituitary Hormone Release in the Sheep

3. Renal tubular dysfunction in fetal alcohol syndrome

4. Bohus B, Borrell J, Koolhaas JM, Nyakas C, Buwalda B, Compaan JC, and Roozendaal B. The neuohypophysial peptides, learning, and memory processing. In: The Neurohyophysis: A Window on Brain Function, edited by North WG, Moses AM, and Share L. New York: NY Academy of Science, 1993, p. 285–299.

5. Oxytocin, vasopressin and neurophysins in the hypothalamo-neurohypophysial system of the human fetus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3