Skeletal muscle blood flow during exercise is reduced in a rat model of pulmonary hypertension

Author:

Long Gary Marshall1ORCID,Troutman Ashley D.2,Gray Derrick A.2,Fisher Amanda J.2,Lahm Tim345ORCID,Coggan Andrew R.2ORCID,Brown Mary Beth6ORCID

Affiliation:

1. Department of Kinesiology, University of Indianapolis, Indianapolis, Indiana

2. Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana

3. Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado

4. Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Indiana University, Indianapolis, Indiana

5. Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana

6. Department of Rehabilitation Medicine, University of Washington, Seattle, Washington

Abstract

Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min−1·kg−1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON ( P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles ( r = −0.58 to −0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reply to Schulze and Musch;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-08-01

2. Skeletal muscle blood flow during exercise is reduced in a rat model of pulmonary hypertension;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-06-01

3. Cell based dATP delivery as a therapy for chronic heart failure;2023-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3