Avian renal proximal tubule epithelium urate secretion is mediated by Mrp4

Author:

Bataille Amy M.,Goldmeyer James,Renfro J. Larry

Abstract

Birds are uricotelic and, like humans, maintain high plasma urate concentrations (∼300 μM). The majority of their urate waste, as in humans, is eliminated by renal proximal tubular secretion; however, the mechanism of urate transport across the brush-border membrane of the intact proximal tubule epithelium during secretion is uncertain. The dominance of secretory urate transport in the bird provides a convenient model for examining this process. The present study shows that short hairpin RNA interference (shRNAi) effectively knocked down gene expression of multidrug resistance protein 4 (Mrp4; 25% of control) in primary monolayer cultures of isolated chicken proximal tubule epithelial cells (cPTCs). Control and Mrp4-shRNAi-treated cPTCs were mounted in Ussing chambers and unidirectional transepithelial fluxes of urate were measured. To detect nonspecific effects, transepithelial electrical resistance (TER) and sodium-dependent glucose transport (Iglu) were monitored throughout experiments. Knocking down Mrp4 expression resulted in a reduction of transepithelial urate secretion to 35% of control with no effects on TER or Iglu. Although electrical gradient-driven urate transport in isolated brush-border membrane vesicles was confirmed, potassium-induced depolarization of the plasma membrane in intact cPTCs failed to inhibit active transepithelial urate secretion. However, electrical gradient-dependent vesicular urate transport was inhibited by the MRP4 inhibitor MK-571 also known to inhibit active transepithelial urate transport by cPTCs. Based on these data, direct measure of active transepithelial urate secretion in functional avian proximal tubule epithelium indicates that Mrp4 is the dominant apical membrane exit pathway from cell to lumen.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3