The effect of low-to-moderate-dose ethanol consumption on rat mammary gland structure and function and early postnatal growth of offspring

Author:

Probyn Megan E.1,Lock Emma-Kate1,Anderson Stephen T.1,Walton Sarah1,Bertram John F.2,Wlodek Mary E.3,Moritz Karen M.1

Affiliation:

1. School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia;

2. Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; and

3. Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia

Abstract

High levels of alcohol consumption during pregnancy can lead to growth deficits in early postnatal life. However, the effects of low-to-moderate alcohol consumption during pregnancy are less clearly defined. The aim of this study was to determine whether low-to-moderate ethanol (EtOH) consumption throughout pregnancy in the rat alters maternal mammary gland morphology and milk protein levels, thereby affecting lactation and the growth of pups after birth. Sprague-Dawley rats were fed an ad libitum liquid diet ± 6% vol/vol EtOH throughout pregnancy. Mammary glands from dams were collected at embryonic day (E) 20 or postnatal day (PN) 1, and expression of milk proteins (α-lactalbumin, β-casein, and whey acidic protein) was examined. In addition, relative amounts of alveoli, lactiferous ducts, adipose tissue, and blood vessels were determined at PN1. A subset of rats gave birth, and offspring growth and milk intake were recorded. Mammary gland weight was unaltered by EtOH, and stereological analysis showed no differences in gland structure compared with control. Although there were no significant changes in mammary gland gene expression at the RNA level, protein levels of α-lactalbumin were increased and whey acidic protein were decreased by EtOH. Offspring of EtOH-fed dams consumed less milk than controls in the lactational period; however, this did not alter their early postnatal growth. Overall, it appears that low-to-moderate-dose prenatal EtOH exposure does not significantly alter mammary gland development but may alter the composition of the various proteins found within the milk in a manner that maintains overall pup growth.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3