Author:
Kawada Toru,Miyamoto Tadayoshi,Uemura Kazunori,Kashihara Koji,Kamiya Atsunori,Sugimachi Masaru,Sunagawa Kenji
Abstract
Neuronal uptake is the most important mechanism by which norepinephrine (NE) is removed from the synaptic clefts at sympathetic nerve terminals. We examined the effects of neuronal NE uptake blockade on the dynamic sympathetic regulation of the arterial baroreflex because dynamic characteristics are important for understanding the system behavior in response to exogenous disturbance. We perturbed intracarotid sinus pressure (CSP) according to a binary white noise sequence in anesthetized rabbits, while recording cardiac sympathetic nerve activity (SNA), arterial pressure (AP), and heart rate (HR). Intravenous administration of desipramine (1 mg/kg) decreased the normalized gain of the neural arc transfer function from CSP to SNA relative to untreated control (1.03 ± 0.09 vs. 0.60 ± 0.08 AU/mmHg, mean ± SE, P < 0.01) but did not affect that of the peripheral arc transfer function from SNA to AP (1.10 ± 0.05 vs. 1.08 ± 0.10 mmHg/AU). The normalized gain of the transfer function from SNA to HR was unaffected (1.01 ± 0.04 vs. 1.09 ± 0.12 beats·min−1·AU−1). Desipramine decreased the natural frequency of the transfer function from SNA to AP by 28.7 ± 7.0% (0.046 ± 0.007 vs. 0.031 ± 0.002 Hz, P < 0.05) and that of the transfer function from SNA to HR by 64.4 ± 2.2% (0.071 ± 0.003 vs. 0.025 ± 0.002 Hz, P < 0.01). In conclusion, neuronal NE uptake blockade by intravenous desipramine administration reduced the total buffering capacity of the arterial baroreflex mainly through its action on the neural arc. The differential effects of neuronal NE uptake blockade on the dynamic AP and HR responses to SNA may provide clues for understanding the complex pathophysiology of cardiovascular diseases associated with neuronal NE uptake deficiency.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Reference36 articles.
1. An innovations approach to optimal control of linear stochastic systems with time delay
2. Åström KJ and Hägglund T. PID Controllers: Theory, Design, and Tuning (2nd ed). Research Triangle Park, NC: Instrument Society of America, 1995.
3. Bendat J and Piersol A. Random Data Analysis and Measurement Procedures (3rd ed). New York: Wiley, 2000, p.189–271.
4. Transfer function analysis of autonomic regulation. I. Canine atrial rate response
5. Norepinephrine reuptake, baroreflex dynamics, and arterial pressure variability in rats
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献