Author:
Bull P. M.,Brown C. H.,Russell J. A.,Ludwig M.
Abstract
Neuropeptide secretion from the dendrites of hypothalamic magnocellular supraoptic nucleus (SON) neurons contributes to the regulation of neuronal activity patterning, which ultimately determines their peptide output from axon terminals in the posterior pituitary gland. SON dendrites also secrete a number of other neuromodulators, including ATP. ATP degrades to adenosine in the extracellular space to complement transported adenosine acting on pre- and postsynaptic SON A1 receptors to reduce neuronal excitability, measured in vitro. To assess adenosine control of electrical activity in vivo, we made extracellular single-unit recordings of the electrical activity of SON neurons in anesthetized male rats. Microdialysis application (retrodialysis) of the A1 receptor antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT) increased phasic vasopressin cell intraburst firing rates progressively over the first 5 s by 4.5 ± 1.6 Hz ( P < 0.05), and increased burst duration by 293 ± 64% ( P < 0.05). Hazard function plots were generated from interval interspike histograms and revealed that these effects were associated with increased postspike excitability. In contrast, CPT had no effect on the firing rates and hazard function plot profiles of continuously active vasopressin and oxytocin cells. However, CPT significantly increased clustering of spikes, as quantified by the index of dispersion, in oxytocin cells and continuously active vasopressin cells (by 267 ± 113% and 462 ± 67%, respectively, P < 0.05). Indeed, in 4 of 5 continuously active vasopressin cells, CPT induced a pseudophasic activity pattern. Together, these results indicate that endogenous adenosine is involved in the local control of SON cell activity in vivo.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献