Is visceral sympathoexcitation to heat stress dependent on activation of ionotropic excitatory amino acid receptors in the rostral ventrolateral medulla?

Author:

Kenney M. J.1,Meyer C. N.1,Hosking K. G.1,Fels R. J.1

Affiliation:

1. Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas

Abstract

Acute heat stress activates visceral sympathetic nerve discharge (SND) in young rats, and the functional integrity of the rostral ventrolateral medulla (RVLM) is required for sustaining visceral sympathoexcitation during peak increases in internal body temperature (Tc). However, RVLM mechanisms mediating SND activation to hyperthermia remain unknown. In the present study, we investigated the role of RVLM ionotropic excitatory amino acid receptors in mediating visceral SND activation to heat stress in anesthetized, young rats. The effects of bilateral RVLM kynurenic acid (Kyn; 2.7 and 5.4 nmol), saline, or muscimol (400–800 pmol) microinjections on renal SND and splenic SND responses to heat stress were determined at peak hyperthermia (Tc 41.5°C), during progressive hyperthermia (Tc 40°C), and at the initiation of heating (Tc increased from 38 to 38.5°C). RVLM Kyn microinjections did not reduce renal and splenic SND recorded during progressive or peak hyperthermia and did not attenuate SND activation at the initiation of heating. In fact, renal and splenic SND tended to be or were significantly increased following RVLM Kyn microinjections at the initiation of heating and during hyperthermia (40 and 41.5°C). RVLM muscimol microinjections at 39, 40, and 41.5°C resulted in immediate reductions in SND. These data indicate that RVLM ionotropic glutamate receptors are required for mediating visceral sympathoexcitation to acute heating and suggest that acute heating activates an RVLM ionotropic excitatory amino acid receptor dependent inhibitory input, which reduces the level of visceral SND to heating.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3