Affiliation:
1. Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
Abstract
Acute heat stress activates visceral sympathetic nerve discharge (SND) in young rats, and the functional integrity of the rostral ventrolateral medulla (RVLM) is required for sustaining visceral sympathoexcitation during peak increases in internal body temperature (Tc). However, RVLM mechanisms mediating SND activation to hyperthermia remain unknown. In the present study, we investigated the role of RVLM ionotropic excitatory amino acid receptors in mediating visceral SND activation to heat stress in anesthetized, young rats. The effects of bilateral RVLM kynurenic acid (Kyn; 2.7 and 5.4 nmol), saline, or muscimol (400–800 pmol) microinjections on renal SND and splenic SND responses to heat stress were determined at peak hyperthermia (Tc 41.5°C), during progressive hyperthermia (Tc 40°C), and at the initiation of heating (Tc increased from 38 to 38.5°C). RVLM Kyn microinjections did not reduce renal and splenic SND recorded during progressive or peak hyperthermia and did not attenuate SND activation at the initiation of heating. In fact, renal and splenic SND tended to be or were significantly increased following RVLM Kyn microinjections at the initiation of heating and during hyperthermia (40 and 41.5°C). RVLM muscimol microinjections at 39, 40, and 41.5°C resulted in immediate reductions in SND. These data indicate that RVLM ionotropic glutamate receptors are required for mediating visceral sympathoexcitation to acute heating and suggest that acute heating activates an RVLM ionotropic excitatory amino acid receptor dependent inhibitory input, which reduces the level of visceral SND to heating.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献