Affiliation:
1. Center for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
Abstract
The organum vasculosum of the laminae terminalis (OVLT) is a circumventricular organ located along the ventral part of the anterior wall of the third ventricle. Because it lacks a complete blood-brain barrier (BBB), blood-borne signals detected in the OVLT provide the brain with information from the periphery and contribute to the generation of centrally mediated responses to humoral feedback and physiological stressors. Experimental studies on the rat OVLT are hindered by a poor understanding of its precise anatomical dimensions and cellular organization. In this study, we use histological techniques to characterize the spatial outline of the rat OVLT and to examine the location of neurons, astrocytes, tanycytes, and ependymocytes within its confines. Our data reveal that OVLT neurons are embedded in a dense network of tanycyte processes. Immunostaining against the neuronal marker NeuN revealed that neurons are distributed throughout the OVLT, except for a thick midline septum, which comprises densely packed cells of unknown function or lineage. Moreover, the most ventral aspect of the OVLT is devoid of neurons and is occupied by a dense network of glial cell processes that form a thick layer between the neurons and the pial surface on the ventral aspect of the nucleus. Lastly, combined detection of NeuN and c-Fos protein following systemic injection of hypertonic NaCl revealed that neurons responsive to this stimulus are located along the entire midline core of the OVLT, extending from its most anterior ventral aspect to the more caudally located “dorsal cap” region.
Funder
Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Heart and Stroke Foundation of Canada (HSFC)
Le Fond de Recherch du Quebec-Sante
McGill University, James McGill Chair
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献