Methazolamide does not impair respiratory work performance in anesthetized rabbits

Author:

Kiwull-Schöne Heidrun F.,Li Yi,Kiwull Peter J.,Teppema Luc J.

Abstract

In human medicine, the carbonic anhydrase (CA) inhibitor acetazolamide is used to treat irregular breathing disorders. Previously, we demonstrated in the rabbit that this substance stabilized closed-loop gain properties of the respiratory control system, but concomitantly weakened respiratory muscles. Among others, the highly diffusible CA-inhibitor methazolamide differs from acetazolamide in that it fails to activate Ca2+-dependent potassium channels in skeletal muscles. Therefore, we aimed to find out, whether or not methazolamide may exert attenuating adverse effects on respiratory muscle performance as acetazolamide. In anesthetized spontaneously breathing rabbits ( n = 7), we measured simultaneously the CO2 responses of tidal phrenic nerve activity, tidal transpulmonary pressure changes, and tidal volume before and after intravenous application of methazolamide at two mean (± SE) cumulative doses of 3.5 ± 0.1 and 20.8 ± 0.4 mg/kg. Similar to acetazolamide, low- and high-dose methazolamide enhanced baseline ventilation by 52 ± 10% and 166 ± 30%, respectively ( P < 0.01) and lowered the base excess in a dose-dependent manner by up to 8.3 ± 0.9 mmol/l ( P < 0.001). The transmission of a CO2-induced rise in phrenic nerve activity into volume and/or pressure and, hence, respiratory work performance was 0.27 ± 0.05 ml·kg−1·kPa·unit−1 under control conditions, but remained unchanged upon low- or high-dose methazolamide, at 0.30 ± 0.06 and 0.28 ± 0.07 ml·kg−1·kPa·unit−1, respectively. We conclude that methazolamide does not cause respiratory muscle weakening at elevated levels of ventilatory drive. This substance (so far not used for medication of respiratory diseases) may thus exert stabilizing influences on breathing control without adverse effects on respiratory muscle function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3