Affiliation:
1. National Marine Mammal Foundation, San Diego, California; and
2. Sonoma State University, Rohnert Park, California
Abstract
Elephant seal weanlings demonstrate rates of endogenous glucose production (EGP) during protracted fasts that are higher than predicted on the basis of mass and time fasting. To determine the nonoxidative and oxidative fate of endogenously synthesized glucose, substrate oxidation, metabolic rate, glycolysis, and EGP were measured in fasting weanlings. Eight weanlings were sampled at 14 days of fasting, and a separate group of nine weanlings was sampled at 49 days of fasting. Metabolic rate was determined via flow-through respirometry, and substrate-specific oxidation was determined from the respiratory quotient and urinary nitrogen measurements. The rate of glucose disposal (GluRd) was determined through a primed, constant infusion of [3-3H]glucose, and glycolysis was determined from the rate of appearance of3H in the body water pool. GluRdwas 1.41 ± 0.27 and 0.95 ± 0.21 mmol/min in the early and late fasting groups, respectively. Nearly all EGP went through glycolysis, but the percentage of GluRdoxidized to meet the daily metabolic demand was only 24.1 ± 4.4% and 16.7 ± 5.9% between the early and late fasting groups. Glucose oxidation was consistently less than 10% of the metabolic rate in both groups. This suggests that high rates of EGP do not support substrate provisions for glucose-demanding tissues. It is hypothesized that rates of EGP may be ancillary to the upregulation of the tricarboxylic acid cycle to meet high rates of lipid oxidation while mitigating ketosis.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献