Affiliation:
1. Axe Neurosciences du Centre de recherche du CHUQ, Université Laval, Québec, QC, Canada
Abstract
The essential role of the median preoptic nucleus (MnPO) in the integration of chemosensory information associated with the hydromineral state of the rat relies on the presence of a unique population of sodium (Na+) sensor neurons. Little is known about the intrinsic properties of these neurons; therefore, we used whole cell recordings in acute brain slices to determine the electrical fingerprints of this specific neural population of rat MnPO. The data collected from a large sample of neurons (115) indicated that the Na+ sensor neurons represent a majority of the MnPO neurons in situ (83%). These neurons displayed great diversity in both firing patterns induced by transient depolarizing current steps and rectifying properties activated by hyperpolarizing current steps. This diversity of electrical properties was also present in non-Na+ sensor neurons. Subpopulations of Na+ sensor neurons could be distinguished, however, from the non-Na+ sensor neurons. The firing frequency was higher in Na+ sensor neurons, showing irregular spike discharges, and the amplitude of the time-dependent rectification was weaker in the Na+ sensor neurons than in non-Na+ sensor neurons. The diversity among the electrical properties of the MnPO neurons contrasts with the relative function homogeneity (Na+ sensing). However, this diversity might be correlated with a variety of direct synaptic connections linking the MnPO to different brain areas involved in various aspects of the restoration and conservation of the body fluid homeostasis.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献