Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses

Author:

Lyall K. A.,Hurst S. M.,Cooney J.,Jensen D.,Lo K.,Hurst R. D.,Stevenson L. M.

Abstract

Exercise-induced oxidative stress is instrumental in achieving the health benefits from regular exercise. Therefore, inappropriate use of fruit-derived products (commonly applied as prophalytic antioxidants) may counteract the positive effects of exercise. Using human exercise and cellular models we found that 1) blackcurrant supplementation suppressed exercise-induced oxidative stress, e.g., plasma carbonyls (0.9 ± 0.1 vs. 0.6 ± 0.1 nmol/mg protein, placebo vs. blackcurrant), and 2) preincubation of THP-1 cells with an anthocyanin-rich blackcurrant extract inhibited LPS-stimulated cytokine secretion [TNF-α (16,453 ± 322 vs. 10,941 ± 82 pg/ml, control vs. extract, P < 0.05) and IL-6 (476 ± 14 vs. 326 ± 32 pg/ml, control vs. extract, P < 0.05)] and NF-κB activation. In addition to its antioxidant and anti-inflammatory properties, we found that postexercise plasma collected after blackcurrant supplementation enhanced the differential temporal LPS-stimulated inflammatory response in THP-1 cells, resulting in an early suppression of TNF-α (1,741 ± 32 vs. 1,312 ± 42 pg/ml, placebo vs. blackcurrant, P < 0.05) and IL-6 (44 ± 5 vs. 36 ± 3 pg/ml, placebo vs. blackcurrant, P < 0.05) secretion after 24 h. Furthermore, by using an oxidative stress cell model, we found that preincubation of THP-1 cells with hydrogen peroxide (H2O2) prior to extract exposure caused a greater suppression of LPS-stimulated cytokine secretion after 24 h, which was not evident when cells were simultaneously incubated with H2O2 and the extract. In summary, our findings support the concept that consumption of blackcurrant anthocyanins alleviate oxidative stress, and may, if given at the appropriate amount and time, complement the ability of exercise to enhance immune responsiveness to potential pathogens.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3