Author:
Benoussaidh Anissa,Maurin Yves,Rampin Olivier
Abstract
The central nervous system contains the nuclei at the origin of autonomic and neuroendocrine pathways to the uterus. Although the anatomical basis of these pathways is known, the conditions of their recruitment and their interactions in the context of copulation remain to be explored. We tested the hypothesis that some central mechanisms could simultaneously recruit both pathways to the uterus. In this aim, we recorded intrauterine pressure changes in anesthetized female rats at the estrus stage after intracerebroventricular (ICV) administration of oxytocin (OT). Doses of 0.3–300 ng elicited increases of frequency and amplitude of uterine contractions. These effects were partly mimicked by the OT agonist [Thr4,Gly7]OT but not by arginine vasopressin. They were blocked by the OT receptor antagonist atosiban delivered either ICV or intravenously. The latter suggests that ICV OT activated the systemic release of OT. The effects of OT were also blocked by hexamethonium, a ganglionic blocking agent, by atropine, a muscarinic receptor antagonist, and by Nω-nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthesis. The results reveal that ICV OT recruits autonomic efferent pathways to the uterus. These results support our hypothesis that the activation of central nuclei can promote uterine contractility, and that OT may be a central coordinator of autonomic and neuroendocrine pathways. The hypothalamus, the source of direct OT-ergic projections to the pituitary, the brain stem, and the spinal cord, may be a target of central OT.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献