Author:
Fry Mark,Ferguson Alastair V.
Abstract
Ghrelin, a peptide hormone secreted from the stomach, is known to have a potent appetite-stimulating activity. Recently, it has been shown that area postrema (AP), a caudal brain stem center that lacks a blood-brain barrier, is a key site of activity for ghrelin in stimulating appetite and regulating pancreatic protein secretion. In this study, we have examined the ability of ghrelin to regulate the electrical activity of area postrema neurons using patch-clamp electrophysiology. Using current-clamp configuration, we found that at a concentration of 10 nM, ghrelin caused inhibition in 19% of neurons tested, while a further 19% were excited by similar application of ghrelin. The remaining 62% of AP neurons were insensitive to ghrelin. These effects were concentration dependent, with an apparent EC50 of 1.9 nM. Voltage-clamp recordings revealed that ghrelin caused a potentiation of voltage-gated K+ currents in neurons that exhibited a hyperpolarization and a potentiation of a depolarizing nonspecific cation current (NSCC) in those neurons that exhibited a depolarization of membrane potential. These are the first data showing that ghrelin exerts a direct effect on electrical activity of AP neurons and supports the notion that ghrelin can act via the AP to regulate energy homeostasis.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献