Systemic arterial hypertension but not IGF-I treatment stimulates cardiomyocyte enlargement in neonatal lambs

Author:

Wilburn Adrienne N.12,Giraud George D.13,Louey Samantha1,Morgan Terry4,Gandhi Nainesh1,Jonker Sonnet S.1ORCID

Affiliation:

1. Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon

2. Pacific University, Forest Grove, Oregon

3. Department of Veterans Affairs Portland Health Care System, Portland, Oregon

4. Department of Pathology, Oregon Health & Science University, Portland, Oregon

Abstract

Although cardiomyocyte terminal differentiation is nearly complete at birth in sheep, as in humans, very limited postnatal expansion of myocyte number may occur. The capacity of newborn cardiomyocytes to respond to growth stimulation by proliferation is poorly understood. Our objective was to test this growth response in newborn lambs with two stimuli shown to be potent inducers of cardiomyocyte growth in fetuses and adults: increased systolic load (Load) and insulin-like growth factor I (IGF-I). Vascular catheters and an inflatable aortic occluder were implanted in lambs. Hearts were collected for analysis at 18 days of age after a 7-day experiment and compared with control hearts. Load hearts, but not IGF-I hearts, were heavier ( P = 0.001) because of increased mass of the left ventricle (LV), septum, and left atrium (40–50%, P = 0.004). Terminal differentiation and cell cycle activity were not different between groups. Myocyte length was 7% greater in Load lamb hearts ( P < 0.05), and binucleated myocytes, which comprise ~90% of LV cells, were 25% larger in volume ( P = 0.03). Myocyte number per gram of myocardium was decreased in all ventricles of Load lambs ( P = 0.01). Cells from the IGF-I group were not different by any comparison. These results suggest that the newborn sheep LV responds to systolic stress with cardiomyocyte hypertrophy, not proliferation. Furthermore, IGF-I is ineffective at stimulating cardiomyocyte proliferation at this age (despite effectiveness when administered before birth). Thus, to expand cardiomyocyte number in the newborn heart, therapies other than systolic pressure load and IGF-I treatment need to be developed.

Funder

HHS | NIH | National Institute of Child Health and Human Development (NICHD)

MJ Murdock Charitable Trust

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3