Insulin-like growth factor-I and genetic effects on indexes of protein degradation in response to feed deprivation in rainbow trout (Oncorhynchus mykiss)

Author:

Cleveland Beth M.1,Weber Gregory M.1,Blemings Kenneth P.2,Silverstein Jeffrey T.13

Affiliation:

1. National Center for Cool and Cold Water Aquaculture, Agricultural Research Service-US Department of Agriculture, Kearneysville, West Virginia;

2. Department of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia; and

3. Office of National Programs, Agricultural Research Service-US Department of Agriculture, Beltsville, Maryland

Abstract

This study determined the effect of genetic variation, feed deprivation, and insulin-like growth factor-I (IGF-I) on weight loss, plasma IGF-I and growth hormone, and indexes of protein degradation in eight full-sibling families of rainbow trout. After 2 wk of feed deprivation, fish treated with IGF-I lost 16% less ( P < 0.05) wet weight than untreated fish. Feed deprivation increased growth hormone ( P < 0.05) and decreased IGF-I ( P < 0.05), but hormone levels were not altered by IGF-I. Plasma 3-methylhistidine concentrations were not affected by IGF-I but were decreased after 2 wk ( P < 0.05) and increased after 4 wk ( P < 0.05) of feed deprivation. In white muscle, transcript abundance of genes in the ubiquitin-proteasome, lysosomal, and calpain- and caspase-dependent pathways were affected by feed deprivation ( P < 0.05). IGF-I prevented the feed deprivation-induced upregulation of MAFbx (F-box) and cathepsin transcripts and reduced abundance of proteasomal mRNAs ( P < 0.05), suggesting that reduction of protein degradation via these pathways may be partially responsible for the IGF-I-induced reduction of weight loss. Family variations in gene expression, IGF-I concentrations, and weight loss during fasting suggest genetic variation in the fasting response, with considerable impact on regulation of proteolytic pathways. These data indicate that nutrient availability, IGF-I, and genetic variation affect weight loss, in part through alterations of proteolytic pathways in rainbow trout, and that regulation of genes within these pathways is coordinated in a way that supports a similar physiological response.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3