Effect of hypercapnic hypoxia and bacterial infection (Vibrio campbellii) on protein synthesis rates in the Pacific whiteleg shrimp,Litopenaeus vannamei

Author:

Hardy Kristin M.123,Burnett Karen G.23,Burnett Louis E.23

Affiliation:

1. Department of Biological Sciences, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, California;

2. Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina; and

3. Grice Marine Laboratory, College of Charleston, Charleston, South Carolina

Abstract

Estuarine species frequently encounter areas of simultaneously low dissolved O2(hypoxia) and high CO2(hypercapnia). Organisms exposed to hypoxia experience a metabolic depression that serves to decrease ATP utilization and O2demand during stress. This downregulation is typically facilitated by a reduction in protein synthesis, a process that can be responsible for up to 60% of basal metabolism. The added effects of hypercapnia, however, are unclear. Certain decapods also exhibit a metabolic depression in response to bacterial challenges, leading us to hypothesize that protein synthesis may also be reduced during infection. In the present study, we examined the effects of hypoxia (H), hypercapnic hypoxia (HH), and bacterial infection ( Vibrio campbellii) on tissue-specific (muscle and hepatopancreas) fractional protein synthesis rates ( ks) in Litopenaeus vannamei. We observed a significant decrease in ksin muscle after 24 h exposure to both H and HH, and in hepatopancreas after 24 h exposure to HH. Thus ksis responsive to changes in O2, and the combined effect of hypercapnic hypoxia on ksis more severe than hypoxia alone. These reductions in ksappear to be driven by changes in RNA translational efficiency ( kRNA), and not RNA capacity ( Cs). Bacterial infection, however, had no significant effect on ksin either tissue. These results suggest that crustaceans reduce metabolic demand during environmental hypoxia by reducing global protein synthesis, and that this effect is magnified when hypercapnia is concomitantly present. Conversely, an immune-mediated metabolic depression is not associated with a decrease in overall protein production.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3