Increases in skeletal muscle ATGL and its inhibitor G0S2 following 8 weeks of endurance training in metabolically different rat skeletal muscles

Author:

Turnbull Patrick C.1,Longo Amanda B.1,Ramos Sofhia V.1,Roy Brian D.1,Ward Wendy E.1,Peters Sandra J.1

Affiliation:

1. Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada

Abstract

Adipose triglyceride lipase (ATGL) catalyzes the rate-limiting removal of the first fatty acid from a triglyceride. ATGL is activated by comparative gene identification-58 and inhibited by G(0)/G(1) switch gene-2 protein (G0S2). Research in other tissues and cell culture indicates that inhibition is dependent on relative G0S2-to-ATGL protein content. G0S2 may also have several roles within mitochondria; however, this has yet to be observed in skeletal muscle. The purpose of this study was to determine if muscle G0S2 relative to ATGL content would decrease to facilitate intramuscular lipolysis following endurance training. Male Sprague-Dawley rats ( n = 10; age 51–53 days old) were progressively treadmill trained at a 10% incline for 8 wk ending with 25 m/min for 1 h compared with control. Sciatic nerve stimulation for hind-limb muscle contraction (and lipolysis) was administered for 30 min to one leg, leaving the opposing leg as a resting control. Soleus (SOL), red gastrocnemius (RG), and white gastrocnemius were excised from both legs following stimulation or control. ATGL protein increased in all trained muscles. Unexpectedly, G0S2 protein was greater in the trained SOL and RG. In RG-isolated mitochondria, G0S2 also increased with training, yet mitochondrial G0S2 content was unaltered with acute contraction; therefore, any role of G0S2 in the mitochondria does not appear to be acutely mediated by content alone. In summary, G0S2 increased with training in oxidative muscles and mitochondria but not following acute contraction, suggesting that inhibition is not through relative G0S2-to-ATGL content but through more complicated intracellular mechanisms.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3