Riboflavin uptake transporter Slc52a2 (RFVT2) is upregulated in the mouse mammary gland during lactation

Author:

Wu Alex Man Lai12,Dedina Liana12,Dalvi Pooja1,Yang Mingdong1,Leon-Cheon John12,Earl Brian1,Harper Patricia A.2,Ito Shinya123

Affiliation:

1. Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; and

2. Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; and

3. Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada

Abstract

While it is well recognized that riboflavin accumulates in breast milk as an essential vitamin for neonates, transport mechanisms for its milk excretion are not well characterized. The multidrug efflux transporter ABCG2 in the apical membrane of milk-producing mammary epithelial cells (MECs) is involved with riboflavin excretion. However, it is not clear whether MECs possess other riboflavin transport systems, which may facilitate its basolateral uptake into MECs. We report here that transcripts encoding the second ( SLC52A2) and third ( SLC52A3) member of the recently discovered family of SLC52A riboflavin uptake transporters are expressed in milk fat globules from human breast milk. Furthermore, Slc52a2 and Slc52a3 mRNA are upregulated in the mouse mammary gland during lactation. Importantly, the induction of Slc52a2, which was the major Slc52a riboflavin transporter in the lactating mammary gland, was also observed at the protein level. Subcellular localization studies showed that green fluorescent protein-tagged mouse SLC52A2 mainly localized to the cell membrane, with no preferential distribution to the apical or basolateral membrane in polarized kidney MDCK cells. These results strongly implicate a potential role for SLC52A2 in riboflavin uptake by milk-producing MECs, a critical step in the transfer of riboflavin into breast milk.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3