Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy

Author:

Lumbers Eugenie R.1,Pringle Kirsty G.1

Affiliation:

1. School of Biomedical Sciences and Pharmacy and Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia

Abstract

This review describes the changes that occur in circulating renin-angiotensin-aldosterone system (RAAS) components in human pregnancy. These changes depend on endocrine secretions from the ovary and possibly the placenta and decidua. Not only do these hormonal secretions directly contribute to the increase in RAAS levels, they also cause physiological changes within the cardiovascular system and the kidney, which, in turn, induce reflex release of renal renin. High levels of ANG II play a critical role in maintaining circulating blood volume, blood pressure, and uteroplacental blood flow through interactions with the ANG II type I receptor and through increased production of downstream peptides acting on a changing ANG receptor phenotype. The increase in ANG II early in gestation is driven by estrogen-induced increments in angiotensinogen (AGT) levels, so there cannot be negative feedback leading to reduced ANG II production. AGT can exist in various forms in terms of redox state or complexed with other proteins as polymers; these affect the ability of renin to cleave ANG I from AGT. Thus, during pregnancy the rate of ANG I production varies not only because levels of renin change in response to homeostatic demand but also because AGT changes not only in concentration but in form. Activation of the circulating and intrarenal RAASs is essential for normal pregnancy outcome subserving the increased demand for salt and, hence, water during pregnancy. Thus, the complex integration of the secretions and actions of the circulating maternal renin-angiotensin system in pregnancy plays a key role in pregnancy outcome.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3