Author:
Gómez-Pinilla Pedro J.,Pozo Maria J.,Camello Pedro J.
Abstract
The incidence of urinary bladder disturbances increases with age, and free radical accumulation has been proposed as a causal factor. Here we investigated the association between changes in bladder neuromuscular function and oxidative stress in aging and the possible benefits of melatonin treatment. Neuromuscular function was assessed by electrical field stimulation (EFS) of isolated guinea pig detrusor strips from adult and aged female guinea pigs. A group of adult and aged animals were treated with 2.5 mg·kg−1·day−1 melatonin for 28 days. Neurotransmitter blockers were used to dissect pharmacologically the EFS-elicited contractile response. EFS induced a neurogenic and frequency-dependent contraction that was impaired by aging. This impairment is in part related to a decrease in detrusor myogenic contractility. Age also decreased the sensitivity of the contraction to pharmacological blockade of purinergic and sensitive fibers but increased the effect of blockade of nitrergic and adrenergic nerves. The density of cholinergic and nitrergic nerves remained unaltered, but aging modified afferent fibers. These changes were associated with an increased level of markers for oxidative stress. Melatonin treatment normalized oxidative levels and counteracted the aging-associated changes in bladder neuromuscular function. In conclusion, these results show that aging modifies neurogenic contraction and the functional profile of the urinary bladder plexus and simultaneously increases the oxidative damage to the organ. Melatonin reduces oxidative stress and improves the age-induced changes in bladder neuromuscular function, which could be of importance in reducing the impact of age-related bladder disorders.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献