Dietary adaptation to high starch involves increased relative abundance of sucrase-isomaltase and its mRNA in nestling house sparrows

Author:

Brun Antonio123,Magallanes Melisa E.2,Barrett-Wilt Gregory A.4,Karasov William H.1,Caviedes-Vidal Enrique125ORCID

Affiliation:

1. Department of Forest and Wildlife Ecology, University of Wisconsin–Madison, Madison, Wisconsin

2. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de San Luis, San Luis, Argentina

3. Facultad de Ciencias de la Salud, Universidad Nacional de San Luis, San Luis, Argentina

4. Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin

5. Departamento de Biología, Universidad Nacional de San Luis, San Luis, Argentina

Abstract

Dietary flexibility in digestive enzyme activity is widespread in vertebrates but mechanisms are poorly understood. When laboratory rats are switched to a higher carbohydrate diet, the activities of the apical intestinal α-glucosidases (AGs) increase within 6–12 h, mainly by rapid increase in enzyme transcription, followed by rapid translation and translocation to the intestine’s apical, brush-border membrane (BBM). We performed the first unified study of the overall process in birds, relying on activity, proteomic, and transcriptomic data from the same animals. Our avian model was nestling house sparrows ( Passer domesticus), which switch naturally from a low-starch insect diet to a higher starch seed diet and in whom the protein sucrase-isomaltase (SI) is responsible for all maltase and sucrase intestinal activities. Twenty-four hours after the switch to a high-starch diet, SI activity was increased but not at 12 h post diet switch. SI was the only hydrolase increased in the BBM, and its relative abundance and activity were positively correlated. Twenty-four hours after a reverse switch back to the lower starch diet, SI activity was decreased but not at 12 h post diet switch. Parallel changes in SI mRNA relative abundance were associated with the changes in SI activity in both diet-switch experiments, but our data also revealed an apparent diurnal rhythm in SI mRNA. This is the first demonstration that birds may rely on rapid increase in abundance of SI and its mRNA when adjusting to high-starch diet. Although the mechanisms underlying dietary induction of intestinal enzymes seem similar in nestling house sparrows and laboratory rodents, the time course for modulation in nestlings seemed half as fast compared with laboratory rodents. Before undertaking modulation, an opportunistic forager facing limited resources might rely on more extensive or prolonged environmental sampling, because the redesign of the intestine’s hydrolytic capacity shortly after just one or a few meals of a new substrate might be a costly mistake.

Funder

Universidad Nacional de San Luis

Department of Forest and Wildlife Ecology, UW-Madison

National Science Foundation

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3