Blood flow index using near-infrared spectroscopy and indocyanine green as a minimally invasive tool to assess respiratory muscle blood flow in humans

Author:

Guenette Jordan A.1,Henderson William R.12,Dominelli Paolo B.1,Querido Jordan S.1,Brasher Penelope M.3,Griesdale Donald E. G.24,Boushel Robert5,Sheel A. William1

Affiliation:

1. School of Human Kinetics, University of British Columbia, Vancouver, British Columbia, Canada;

2. UBC Program of Critical Care Medicine, University of British Columbia, Vancouver, British Columbia, Canada;

3. Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada;

4. Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; and

5. Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

Near-infrared spectroscopy (NIRS) in combination with indocyanine green (ICG) dye has recently been used to measure respiratory muscle blood flow (RMBF) in humans. This method is based on the Fick principle and is determined by measuring ICG in the respiratory muscles using transcutaneous NIRS in relation to the [ICG] in arterial blood as measured using photodensitometry. This method is invasive since it requires arterial cannulation, repeated blood withdrawals, and reinfusions. A less invasive alternative is to calculate a relative measure of blood flow known as the blood flow index (BFI), which is based solely on the NIRS ICG curve, thus negating the need for arterial cannulation. Accordingly, the purpose of this study was to determine whether BFI can be used to measure RMBF at rest and during voluntary isocapnic hyperpnea at 25, 40, 55, and 70% of maximal voluntary ventilation in seven healthy humans. BFI was calculated as the change in maximal [ICG] divided by the rise time of the NIRS-derived ICG curve. Intercostal and sternocleidomastoid muscle BFI were correlated with simultaneously measured work of breathing and electromyography (EMG) data from the same muscles. BFI showed strong relationships with the work of breathing and EMG for both respiratory muscles. The coefficients of determination ( R2) comparing BFI vs. the work of breathing for the intercostal and sternocleidomastoid muscles were 0.887 ( P < 0.001) and 0.863 ( P < 0.001), respectively, whereas the R2 for BFI vs. EMG for the intercostal and sternocleidomastoid muscles were 0.879 ( P < 0.001) and 0.930 ( P < 0.001), respectively. These data suggest that the BFI closely reflects RMBF in conscious humans across a wide range of ventilations and provides a less invasive and less technically demanding alternative to measuring RMBF.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3