Affiliation:
1. Department of Physiology, Medical College of Wisconsin, Milwaukee53226.
Abstract
Increased tissue oxygen delivery may play a role in the increased vascular resistance that develops in volume-expanded hypertension. This hypothesis was tested by decreasing the affinity of hemoglobin for oxygen in dogs to increase unloading of oxygen to the tissues. Six chronically instrumented dogs were studied before and for 7 days after partial exchange transfusion with red blood cells modified by incorporation of inositol hexaphosphate, which, 1 h after exchange, increased the PO2 value at which hemoglobin is half-saturated with oxygen (P50) to 38.8 +/- 2.1 mmHg from a control value of 31 +/- 1.5 mmHg. Cardiac output (electromagnetic flowmeter) fell to 92.5 +/- 7.4 ml.kg-1.min-1 after 2-4 h from control values between 120.2 +/- 5.7 and 125.8 +/- 4.6 ml.kg-1.min-1. One day later, cardiac output was still significantly decreased to 104.0 +/- 5.9 ml.kg-1.min-1. As P50 returned to control over the next few days, so did cardiac output. Two to four hours after exchange, total peripheral resistance was increased to 1,144 +/- 73 mmHg.l-1.kg.min from control values between 762 +/- 26 and 790 +/- 32 mmHg.l-1.kg.min. It was still increased to 993 +/- 51 mmHg.l-1.kg.min after 1 day. Oxygen consumption did not change significantly. Cardiac output and peripheral resistance changes were significantly different from those measured in a control group of six dogs receiving exchange transfusion with sham-shifted red blood cells without significant P50 changes. These results suggest that an increase in tissue oxygen delivery can raise total peripheral resistance in dogs in the absence of primary changes in fluid volumes, blood flow, or blood pressure.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献