Affiliation:
1. Department of Physiology, University of South Carolina, Columbia29208.
Abstract
Isolated vasodilated cat hindlimb skeletal muscles were perfused at constant flow and stimulated at 4 Hz for 2-4 min in three studies. Water uptake rates were measured gravimetrically or calculated from venous protein concentration changes. Venous plasma sodium, potassium, chloride, and osmolality were also measured. Maximum water uptake rates averaged 1.8 +/- 0.2 (SE) ml.min-1 x 100 g-1, reaching twice that in some experiments. Water uptake continued after stimulation had ceased. Constant-flow perfusion maintained a constant capillary pressure that was corroborated by measurements of arterial and venous perfusate pressures. Water uptake rate was not influenced by hematocrit but was highly correlated with plasma flow rate. The evidence strongly suggests that small-molecule osmotic pressure was the primary pressure causing the transcapillary water flux. Venous plasma sodium and chloride concentrations increased almost as much as protein (108 and 87% of the protein increase, respectively), as would be expected when water fluxes are driven by small-molecule osmotic pressure. Peak potassium efflux averaged 36 +/- 3 mu eq.min-1 x 100 g-1, but potassium did not contribute significantly to the osmotic gradient.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献