Isovolumetric performance of isolated ground squirrel and rat hearts at low temperature

Author:

Caprette D. R.,Senturia J. B.

Abstract

The effects of low temperature on mechanical performance of the isolated left ventricles of the 13-lined ground squirrel (a hibernator) and the rat (a nonhibernator) were studied. In addition, low-temperature performance of hearts from summer-active, winter-hibernating, and winter-active ground squirrels were compared. By measuring pressure (P) generated against a balloon inserted into the left ventricle, maximum developed pressure (DP) and maximum rate of increase of P (peak dP/dt) were determined over a temperature range of 5–20 degrees C. The DP and dP/dt of the rat ventricle exhibited significantly greater reduction in magnitude at reduced temperature, compared with those of ground squirrel ventricle. Rat, but not ground squirrel, hearts exhibited arrhythmias of various kinds, including extra-systoles, tachycardia, pulsus alternans, and periods of asystole. Hearts from winter-active ground squirrels developed greater pressures than those from winter-hibernating and summer-active animals. This evidence suggests that disruption of cell communication in the nonhibernator ventricular myocardium plays an important role in the failure of the nonhibernator heart at low body temperatures. Contractility of the seasonal hibernator's heart is influenced by both season and hibernation itself, possibly through shifts in myocardial metabolism. However, seasonal adaptations appear not to be required to confer the special resistance of the seasonal hibernator's heart to the deleterious effects of low temperature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3