Affiliation:
1. Department of Physiology, Cardiovascular Renal Research Center, Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
Abstract
Despite preeclampsia being one of the leading causes of maternal death and a major contributor of maternal and perinatal morbidity, the mechanisms responsible for its pathogenesis have yet to be fully elucidated. Growing evidence indicates that reduced uteroplacental perfusion and the resulting placental ischemia triggers the cascade of events leading to this maternal disorder. While the well-established rat model of reduced uterine perfusion pressure (RUPP) is providing invaluable insight into the etiology of preeclampsia, the aim of this study was to develop a mouse model of reduced uterine perfusion to expand mechanistic investigation by incorporation with novel gene-targeted mice. To accomplish this aim, a sham surgical procedure or a restriction of blood flow at the abdominal aorta and the ovarian arteries was initiated at day 13 of gestation in C57BL/6J mice. Mean arterial pressure measured in conscious, chronically instrumented mice was significantly elevated in the RUPP (120 ± 4 mmHg) compared with the sham (104 ± 4 mmHg) mice at day 18 of gestation ( P < 0.01). Placental ischemia reduced fetal weights (0.95 ± 0.04 and 0.80 ± 0.02 g; RUPP vs. Sham, respectively; P < 0.02) and increased circulating levels of antiangiogenic soluble fms-related tyrosine kinases (sFlt)-1 ( P < 0.05) in the RUPP at day 18 of gestation. Plasma concentrations of sFlt-1 are increased in preeclamptic patients and in response to reduced uterine perfusion in the rat. Thus, these results suggest that the mouse model of reduced uterine perfusion is applicable to facilitate novel mechanistic investigation into the etiology of hypertension that results from placental ischemia during pregnancy.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献