Author:
Paterson Janice M.,Seckl Jonathan R.,Mullins John J.
Abstract
11β-Hydroxysteroid dehydrogenases (HSDs) interconvert active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto derivatives (cortisone, 11-dehydrocorticosterone). 11β-HSD type 1 is a predominant reductase that regenerates active glucocorticoids in expressing cells, thus amplifying local glucocorticoid action, whereas 11β-HSD type 2 catalyzes rapid dehydrogenation, potently inactivating intracellular glucocorticoids. Both isozymes thus regulate receptor activation by substrate availability. Spatial and temporal regulation of expression are important determinants of the physiological roles of 11β-HSDs, with each isozyme exhibiting a distinct, tissue-restricted pattern together with dynamic regulation during development and in response to environmental challenges, including diet and stress. Transgenic approaches in the mouse have contributed significantly toward an understanding of the importance of these prereceptor regulatory mechanisms on corticosteroid receptor activity and have highlighted its potential relevance to human health and disease. Here we discuss current ideas of the physiological roles of 11β-HSDs, with emphasis on the key contributions made by studies of 11β-HSD gene manipulation in vivo.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献