Differential expression of the pro-natriuretic peptide convertases corin and furin in experimental heart failure and atrial fibrosis

Author:

Ichiki Tomoko1,Boerrigter Guido1,Huntley Brenda K.1,Sangaralingham S. Jeson1,McKie Paul M.1,Harty Gail J.1,Harders Gerald E.1,Burnett John C.1

Affiliation:

1. Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota

Abstract

In heart failure (HF), the cardiac hormone natriuretic peptides (NPs) atrial (ANP), B-type (BNP), and C-type (CNP) play a key role to protect cardiac remodeling. The proprotein convertases corin and furin process their respective pro-NPs into active NPs. Here we define in a canine model of HF furin and corin gene and protein expression in normal and failing left atrium (LA) or ventricle (LV) testing the hypothesis that the NP proproteins convertases production is altered in experimental HF. Experimental canine HF was produced by rapid right ventricular pacing for 10 days. NPs, furin, and corin mRNA expression were determined by quantitative RT-PCR. Protein concentration or expression was determined by immunostaining, radioimmunoassay, or Western blot. Furin and corin proteins were present in normal canine LA and LV myocardium and vasculature and in smooth muscle cells. In normal canines, expression of NPs was dominant in the atrium compared with the ventricle. In experimental early stage HF characterized with marked atrial fibrosis, ANP, BNP, and CNP mRNA, and protein concentrations were higher in HF LA but not HF LV compared with normals. In LA, corin mRNA and protein expressions in HF were lower, whereas furin mRNA and protein expressions were higher than normals. NPs and furin expressions were augmented in the atrium in experimental early stage HF and, conversely, corin mRNA and protein expressions were decreased with atrial remodeling. Selective changes of these NP convertases may have significance in the regulation of pro-NP processing and atrial remodeling in early stage HF.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3