Potassium-induced relaxation in vascular smooth muscle of ground squirrels and rats

Author:

Harker C. T.,Webb R. C.

Abstract

This study was designed to assess differences in potassium-induced relaxation in two rodents, the Sprague-Dawley albino rat and the 13-lined ground squirrel, Citellus tridecimlineatus. Femoral arteries from both species were cut into helical strips for isometric force recording. After norepinephrine-induced contraction in potassium-free solution, the arterial strips relaxed in response to the introduction of potassium (0.25-20 mM) into the bath. Potassium-induced relaxation was greater in rat than ground squirrel arteries. The concentrations required to induce half-maximal relaxation were approximately 2.5 mM for both species. Potassium-induced relaxation varied with the duration of incubation in potassium-free solution, and with the contractile magnitude induced by varying norepinephrine concentrations. Ouabain inhibited potassium-induced relaxation, with the ground squirrel showing greater sensitivity to the cardiac glycoside than did the rat. Acute cooling (from 37 to 17 degrees C) caused a reduction of the contractile response to norepinephrine in rat arteries, whereas those taken from ground squirrels maintained contractions at, or above, those attained at 37 degrees C. In addition, potassium-induced relaxation in ground squirrel vessels was more sensitive to inhibition by cold than it was in those from the rat. The results show that the characteristics of potassium-induced relaxation (ouabain and temperature sensitivity, magnitude of response, etc.) are species related (ground squirrel vs. rat).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3