Sample entropy analysis of neonatal heart rate variability

Author:

Lake Douglas E.1,Richman Joshua S.1,Griffin M. Pamela1,Moorman J. Randall1

Affiliation:

1. Departments of Internal Medicine (Cardiovascular Division) and Pediatrics, University of Virginia, Charlottesville, Virginia 22908

Abstract

Abnormal heart rate characteristics of reduced variability and transient decelerations are present early in the course of neonatal sepsis. To investigate the dynamics, we calculated sample entropy, a similar but less biased measure than the popular approximate entropy. Both calculate the probability that epochs of window length m that are similar within a tolerance r remain similar at the next point. We studied 89 consecutive admissions to a tertiary care neonatal intensive care unit, among whom there were 21 episodes of sepsis, and we performed numerical simulations. We addressed the fundamental issues of optimal selection of m and r and the impact of missing data. The major findings are that entropy falls before clinical signs of neonatal sepsis and that missing points are well tolerated. The major mechanism, surprisingly, is unrelated to the regularity of the data: entropy estimates inevitably fall in any record with spikes. We propose more informed selection of parameters and reexamination of studies where approximate entropy was interpreted solely as a regularity measure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3