Abstract
Three hypothetical brain processes--interhemispheric coupling, hemispheric activation, and interhemispheric inhibition--are derived from an equation characterizing general systems theory. To investigate these processes, experimental rats were reared under differing early experience conditions. When adult, they had their right or left neocortex lesioned, had a sham operation, or were left undisturbed. Interhemispheric coupling was measured by means of a correlation coefficient between the right and left hemispheres. The presence of a significant positive correlation is taken as evidence of a negative feedback loop between the hemispheres. In one experimental population, in which rats did not receive any extra stimulation in infancy, the correlation was not significantly different from zero, thus implying that the two hemispheres were operating independently. In another population, in which rats had received handling stimulation in infancy, the correlation coefficient was significant (0.543), indicating that the hemispheres were coupled in a systems arrangement. The processes of hemispheric activation and interhemispheric inhibition were assessed by comparing the mean performance of the two unilateral lesion groups and the group with intact brain. The two rat populations had different forms of brain organizations as measured by these processes. These analyses show that the behavior of the isolated hemisphere cannot be directly extrapolated to the behavior of the connected hemisphere. If there is hemispheric coupling via a negative feedback loop or if there is interhemispheric inhibition, then the disconnected hemisphere may show behaviors that are not evident in the normal connected condition.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献